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1. INTRODUCTION

The study of an important and challenging problem in science and engineering
has been the understanding of the strength and fracture behavior of stressed solid
systems. This is particularly true in the failure behavior and its prediction in
viscoelastic material systems. Both the structural and functional application of these
materials demand a better understanding of their behavior and failure mechanisms.
When sufficiently large tensile stresses are associated with these materials, various
modes of failure develop. To elucidate these, one common mode of response, namely
crazing under an applied simple stress, must first be understood. Major advances and
breakthroughs in the crazing behavior in microscopic and macroscopic levels of
understanding will yield tremendously useful information not only theoretically but also
practically. Considerable technological and scientific significance is attached to this
proposed endeavor. The initiation and propagation of crazing as quasifracture, the
time dependent fracture strength of oriented polymers, the associated molecular
orientation and ultimate strength in and around a craze, the interaction of crazes in
polymeric and composite systems are just some of the features to be understood. The
determination of the time dependent fracture strength of polymers and composite
systems, the displacement field and the stress distribution in the vicinity of craze-crack
transition region as well as the propagation behavior of craze and crack are important
problems to be solved prior to the consideration of many other relevant topics.
Currently a firm foundation has been established. It appears that continued research

in the relevant outgrowth topics will result in a truly fruitful understanding of the subject
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18 BACKGROUND INFORMATION AND OBJECTIVES, with REFERENCES

Advanced reinforced plastics, consisting of a polymer matrix and fibres,
continue to generate great interest in their application to high performance structural
components. Fracture of these composite systems may result from flaws in fibres or
matrix as well as the failure of the bonds. Thus the strength of any such composite is
governed by the time dependent strength characteristics of the matrix, the fibres and
the bonds. Because of the difference in the mechanical behavior of the three
constituents of composites, up to now many strength criteria have been considered
and developed by scientists and engineers all over the world as reflected by, for
example, several recent references [1 through 3].

The studies of time-dependent failure of composites have been relatively scarce
in spite of the strong dependence of the failure characteristics on time. The
formulation of the models must now be based upon the microstructural peculiarities of
deformation, the molecular orientation, temperature and time. Aside from the
phenomenological models, perhaps, statistical models should also be considered

concurrently so that they may reinforce each other's findings and development.

REFERENCES

1. Handbook of Composites Series (Strong Fibres, Structure and Design, Failure
Mechanics of Composites and Fabrication fo Composites). Edited by A. Kelly and Yu.
N. Rabotnove, North Holland (1985).

2. Proceedings of International Symposium on Composite Materials and
Structures. Edited by T. T. Loo and C. T. Sun, Beijing, China (June, 1985).

3. M. F. Kanninen and C. H. Popelar. Advanced Fractures Mechanics. Oxford
University Press, New York; Clarendon Press, Oxtord (1985).
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M. MICROMECHANICS OF POLYMERS AND COMPOSITES

The phenomenon of crazing and its relation to some fracture analyses are
considered as follows:

The formation of a craze comes about from a physical transformation in the
deformation processes of the microscopic material molecules under tensile stress.
The transformation takes place from a homogeneous deformation to a craze
configuration when a critical condition is reached. Subsequently, the craze boundary
propagates as a function of applied stress, time, temperature, physical and chemical
influence as well as the actual microstructural changes subjected to geometrical
constraints. As a result, usually minute voids are generated among oriented
molecules and the density of the medium in the crazed region is nonuniformly reduced
whereas the bulk of the homogeneous material body deforms more uniformly. The
interface boundary layer enveloping crazes of many solid materials is capable of
being drawn and transformed into bundles of highly oriented molecular domain
structure in the craze region. Further stressing will eventually initiate craze-crack
transition. It appears necessary to take these physical variations into consideration in
any mathematical modeling and formulation in analyzing the stresses from the time
when crazes incept to the time when they propagate and transf'orm into real fractures.

The science of crazing, a quasifracture state, and subsequent cracking, a
fracture state, of solid material systems under tension has been making large strides in
the recent past. The crazing mechanism has been associated with molecular
orientation and fracture strength [1 to 5]. Subsequently various methods have been
utilized to determine and confirm the molecular mechanism with respect to craze
formation and fracture in thermoplastics [5,6). Essentially under tensile stresses

certain solid materials deform from sites where high stress concentrations are created
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and crazes develop. Because of geometrical constraints and energy requirements,
the material molecules orient themselves in the direction of stressing with voids among
them. As stated earlier, the presence of oriented polymeric molecules in a craze
region bounded by surprisingly smooth interface layers is visualized as an actuaf
physical phase transtormation in the deformation processes from one orientation state
to another depending upon the magnitude and rate of applied tensile stress (8],
material characteristics as well as, of course, temperature and physical and chemical
environments, etc., surround the solid body. As a result, the mechanical behavior of
the material is greatly affected by the macroscopic geometry and the distribution and
interaction of the individual crazes as well as the microscopic molecular configuration
and voids within each craze region and along its immediate boundaries enveloping
the area. Macroscopically the development of crazes and their distribution can be
detected statistically by laser diffraction technique [9). The geometry of an individual
craze which can be studied by focused laser beams [10] is of primary importance in
understanding the processes of its initiation and propagation as well as the
deformation, quasifracture-fracture transition, and eventually the fracture behavior of
the medium. Knowledge of craze initiation and geometry helps in determining the
craze displacement field, the stress distribution and the craze-crack transition and
propagation under load [11,12]. An eventual understanding of the true mechanism of
molecular strength and fracture behavior of a simple solid matrix and a compiex
composite system can be obtained if fundamental microscopic information is utilized in
macroscopic analyses.

In a craze the highly strained molecular bundles act as boundary tractions with
great strength, any governing mathematical formulation must include this feature for

any adequate analysis. Crazes of different forms and properties have occurred in
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polymeric materials [13,14] and other solid systems including even single crystals [15].
An analysis is highly desirable and may be useful for studying general solid systems.

Both long- and short-range programs may be considered. It appears fruitful that
emphasis be placed on the study of micromechanics of individual craze-crack
transition, the source of failure under various internal and external stresses for the
matrix and the composite systems.

The nature of the stresses in and around a craze-crack transition region is the
key to the understanding of the morphology and nucleation as well as the propagation
of crazes and cracks. The first attempt in calculating the state of macroscopic tensile
stress field in the direction of the applied load as a function of craze length has been
based upon a model with an assumed craze boundary displacement as a crack
opening in an infinite elastic sheet [16]. The stresses were calculated as though the
craze were a continuum and the craze boundary developed no stress perpendicular to
the direction of applied stress. The solution of the two-dimensional-homogeneous
biharmonic equation for a semi-infinite elastic medium due to the application of an
external pressure to the surface has been used [17,18). This implies that the craze
behavior is independent of the craze medium [18,19] under stress. The solutions were
obtained using a Fourier transform technique [20] or a complex variable method of
analysis [19,21,22]. With proper assumed boundary conditions the latter method of
approach gives probable stress and displacement fields surrounding a craze. A
model for craze growth has aiso been considered with the creep of craze material as
the cause of craze propagation. The craze growth was found to be linear with respect
to the log of time [19].

The aforementioned stress analyses have been made essentially on the basis

of the classical elasticity theory for a homogeneous elastic medium with either an
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assumed stress distribution for certain portions of a crack without considering any time

dependency.

The development of crazing is not only a function of stress but also a function of

time [23,24]. Using the current theory and by taking into consideration the isotropic

and anisotropic material constants the mathematical model describing the crazing

mechanism have been successful [25].
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V.

OUTLOOK FOR THE SECOND YEAR
(Work to be considered for publication)
1. "Crack-Induced-Craze"

The analysis of the crack-induced-craze in polymers is believed to be a
fairly general phenomenon in fracture studies. This work will deal with the use
of a viscoelastic boundary element method for analyzing a polymer quasi-
fracture. A time dependent boundary stiffness will be considered and the
viscoelastic solution in the time domain may be obtained by applying the
collocation Laplace inversion technique. Using these methods, the
quasifracture problem with time dependent stiffness fractions in a two-
dimensional case may be analyzed. Both the craze opening displacement
profile and the envelope stress distribution around a craze can be computed.
This will pave the way in evaluating the propagation history of both the crack
and the craze. Results thus obtained may be compared with those obtained by
previous considerations such as the use of Dugdale model and the concern on

the stress concentration phenomenon.

2. "Crazing as Quasifracture”

Before any real fracture develops under stress in polymeric or composite
systems, it seems that a fairly general picture common to most solid systems,
crazing incepts first. Following the previously stated craze-crack transition and
crack-induced-craze, the initiation of crazing is simply a special case. in the
absence of crack the craze as quasifracture has been studied by many
scientists. Since the boundary element method has become recently a
powerful technique for solving boundary value problems including some

nonlinear ones, it is especially important as a tool to be used in problems
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‘A

having viscoelastic deformations and fractures. Therefore, it may be fruitful in
developing proper procedures for calculating the stress distributions around a

craze envelope.

3. "Time Dependent Fracture Strength of Solid Bodies"

Statistical theories in fracture kinetics constitute a very important role in
investigating the fracture strength of solids and their utilization in modern
engineering. In this short report, a review of some of the recent concepts and
models is provided. The main concern is the etfect of the breaking stress on the
time-to-break. Based upon the consideration of the fraction of integrity of a
medium, a number of models have been evaluated and compared. Two basic
considerations used for evaluation and comparisdn are Zhurkov's empirical
kinetic relationship and Hsiao's statistical absolute reaction rate model. Other
considerations reducible from these two are also given for comparison. Using a
well-known numerical analysis method, it appears that the nonlinear
mathematical consideration is more realistic in describing the time-dependent
fracture strength behavior of a medium over any linear ones. The computed

results seem to fit reasonably well with the general observations.

OUTLOOK FOR THE THIRD YEAR
(Research to be conducted)

1. "Temperature Variation during Polymer Failure”

This paper attempts to discuss the temperature variation during polymer
failure using a statistical absolute reaction rate theory. At fracture, the
temperature may increase or decrease depending upon a quantity named

fraction or integrity f and its rate f and accelerator f as well as a stress modifier

B.
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For over a century, scientists and engineers have observed temperature
variations during loading and testing of solids. Most work in this area focused
on metallic systems: temperature changes during elastic and/or plastic
deformations, as well as theoretical investigations based on mechanics and
thermodynamics.
Using the statistical absolute reaction rate theory, the present work

attempts to analyze the temperature variation during polymer failure.

2. irradiation on Crazing Development”

The aerospace industry of the mid '80s is now being heavily involved in an
unprecedented number of space projects which require the use of a diverse
range of devices, all of which are exposed to much higher levels of radiation
than the ones inside the earth’'s atmosphere. Polymeric materials are in
common use although it is known that changes in their molecular structure are
induced when exposed to high energy irradiation. The effects are not the same
for all polymeric systems since some of them may degrade, others are induced
to crosslinking and still others may crosslink to a saturation point and then
degrade. In all cases, the mechanical properties are affected which implies
changes on the performance and longevity of the material system.

At present there is a need to understand the mechanism responsible for
these alterations as well as a model from which analysis and prediction of the

polymer crazing behavior in environments exposed to radiation.

3. "Three-Dimensional Crazing"
Polymers and polymeric composites usually fail by first developing crazing

on the surface of the material system. Internal crazes can also be initiated when
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sufficient and necessary conditions exist. The time-dependent craze failure
process, whether two-dimensional or three-dimensional, may be characterized
by several stages: deformation, development of micropofosity, craze initiation,
craze-crack transition and propagation until complete failure occurs. The
interrelationship among the applied stress, craze initiation, time and
temperature has been established and a fairly general time-dependent theory
on craze initiation in viscoelastic media has been formulated. This craze
initiation criterion is three-dimensional. It would be highly desirable to examine

this new criterion and analyze the craze in three-dimensions.

Vil. POSSIBLE FUTURE TOPICS AND THEIR IMPACT ON POLYMERIC
AND COMPOSITE RESEARCH

"Analysis of Craze Interactions”

"Potential Energy Mimimization of Composite Matrix"
"Potential Energy of Fiber Reinforced Composite System"”
"Elasticity Constants of Composites”

"Thermal Coefficients of Composites”

The aforementioned individual descriptions are some immediate projects to be
completed and some others to be explored. Whenever possible time and temperature
dependent stress analyses need to be introduced in the constitutive modeling of the
mechanical behavior of composite systems at micro- and macro-structural levels. This
interest is in the development of analytical methods as tools. To be followed are some
experimental verifications and certain temperature data for quantitative analyses and
numerical computations. It is hoped that these projects will have an impact leading to
a better understanding of the effect of time and temperature on craze and fracture of
composite systems.
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vill. SUMMARY
* Noncontinuum Craze-Crack transition yields damage behavior of composite
. systems.
* Studies of time dependent failure of composite systems are important
practically and theoretically.
* Objectives are to obtain better understanding of the connection between
microstructure and mechanics.
* An overall view is given during the first year, in the published paper "Non-
Continuum Craze-Crack Transition.”
* During the second year, several topical papers will be published. They are
related to:
"Crack-Induced-Craze”
"Crazing as Quasifracture”
"Time Dependent Fracture Strength of Solid Bodies”
* Some research work will be considered for the third year”:
"Irradiation on Crazing Development”
"Three-Dimensional Crazing”
"Temperature Variation During Polymer Failure”
* Possible future research topics:
"Analysis of Craze Interactions”
. "Minimization of Potential Energy for Composite Matrix"
"Minimization of Potential Energy for Composite Systems”
"Analyses of Elasticity Constants of Composites”

"Analyses of Thermal Coefficients of Composites”

* Six (6) copies of "Non-Continuum Craze-Crack Transition" are appended.
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NON-CONTINUUM CRAZE-CRACK TRANSITION

C. C. Hsiao
Department of Aerospace Engineering and Mechanics
University of Minnesota
Minneapolis, Minnesota

ABSTRACT

An approach studying the damage problem of
polymeric and composite material systems is reviewed. It
appears highiy desirable to investigate the strength and
fracture behavior of stressed solid systems by combining
microstructural information with macro- mechanical
analysis.

Starting from the initiation of crazes, the process of
transition of a craze to crack in an infinite viscoelastic
medium under stress is described. The actual physical
change of a craze into a crack is considered. Emphasis is
placed on the nature of its time dependency. The
entargement of both craze and crack is analyzed under a
simple state of tension. Suggestions on future research
upon temperature influence on crazing and craze-crack
interactions are also given.

NOMENCLATURE

AB material constants

an integer constants (-o0 < n < o)

a(t) time-dependent length to high stress ievel 02

b{t) time-dependent crack length measured from
center of symmetry

c(t) time-dependent craze-crack length measured
from center of symmetry

Con(t) time-dependent material creep compliance
function

O (1) rate of energy dissipation of crace fibril
domains

dix.t) time- and position-dependent diameter of
craze fibril domains

d, average diameter of fibril domain under craze
envelope stress O ¢

d; average diameter of fibril domain under craze
envelope stress Oz

E(t) relaxation modulus

6ij deviatoric strains

f fraction of integrity of microstructural system

Gy(t-v) time-dependent deviatoric relaxation modulus

Go(t-7)  time-dependent dilatational relaxation

modutus
He(t) rate of energy absorption of quadrantal craze
Iy, b2 constants

J2(&-n) time dependent bulk creep compliance
function

Ky, Kz, K3, Ky differential or integral functions

Kp = wpexpl- URT +8¥(Y)] rate coefficiert of breakage
Kr = wrexp(- U/RT - 3¥(t)] rate coefficient of reformation
Ke(t) rate of kinetic energy of craze fibril domains
] integers

nj, nj unit vectors (i, j = 1,2 0r 3)

P(t) time-dependent load
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XK
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infinitesimal elemental vector in reference
frame XK (K=1,20r3)

infinitesima! alemental vector in current frame
xy (k=1,20f3)

craze-crack system depth measured from
center of symmetry

universal gas constant

magnitude of deviatoric stress tensor
deviatoric stress tensor

Laplace parameter

deviatoric stresses

rate of creation of craze fibril domain surface
absolute temperature

real time

time when a(t) reaches position x
time-to-break

craze initiation time

craze-crack transition time

time when b(t) reaches position x
nucieus incubation time

time for tip of craze-crack system to reach
position x

period of time fibril domains subjected to
stress O 2

activation energy

rate of strain energy absorption of craze fibril
domains

volume fraction of craze fibril domains

displacement gradients

craze opening dispiacement measured from
center of symmetry

mmony:gmtryo!
craze-crack system as defined
coordinate along first coordinate axis
coordinates in reference frame (K= 1, 2 or 3)

coordinates in current frame (x = 1, 2 or 3)
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Ami

Am2
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G4, 02
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Gii
Omax

Smin

o(x, 1)

third coordinate axis

constant iinear thermal coefficient of
expansion

positiva parameters

delta function

material constants

origntation strain (- 1 < € < %)
straintensor (k,1=1,20r3)

spherical coordinates

temparature function

time- and position-dependent draw ratio

draw ratio beyond craze mid-section
under stress Oy

draw ratio of craze mid-section at
stress level 1

draw ratio of craze mid-section at
stress level G,

strain ratio
N =Td(T) shifttimes
strain ratio

density of the probability distribution
function of molecular orientation

appfied stress

constant temperature, time-dependent stress
principal stresses

craze envelope stress levels

tensile strength or fracture strength

craze envelope stress

stress tensor (i,j=1,20r3)

time derivative of the isotropic stress tensor
maximum breaking stress

minimum breaking stress

time or dummy parameter

stress function at spatial position x and time t




ém temperature-time shift function

4 axial stress of an slement

do solid angle

wp frequency of motion in breaking process
Wr frequency of motion in reforming process

PRELIMINARIES AND INTRODUCTION

For a long time, the analyses and prediction of the
mechanical strength behavior of engineering components
have been dependent mostly upon the application of
continuum theories. This is true even in failure studies.
Elasticity, viscoelasticity, plasticity and linear elastic
fracture mechanics have dominated much of the analytical
investigation in solid mechanics. Failure criteria for
continuous media are considered to be independent with
respect to the integrity of the media. There is no
introduction of noncontinbum damage mechanics based
upon microstructural behavior, and discrete interactions
among discontinuous flaws are not predictable.

Recently, however, a new research direction has
emerged to connect microscopic material behavior with
macroscopic structural mechanics. This is motivated
primarily by the strong desire to design the constitution
and configuration of the microstructure of material systems
for obtaining required macromechanical properties and
functions. In doing 80, the integrity of the media is
included in failure criteria as well as in the constitutive
description. Micromechanisms and their interactions are
taken into consideration in analyses aside from their time
and temperature dependencies.

In failure investigations of solids and composite
material systems, an important and challenging problem
in science and engineering has been the attempt to
understand the strength and fracture behavior of stressed
solid systems. Either continuum or noncontinuum method
of approach has been used to study the problem. The

mechanics deals with the

strain, strain rate and temperature fielkds. The
noncontinuum approach deals with the individual micro-

such as minute crazes and cracks formed in the
matrix together with the matrix-fiber interfaces in

The following gives an example concerning a
noncontinuum micromechanics and craze-crack transition

Since the first publication of the pioneer work on
crazing,! there was an inacverient attempt 1o connect the
microstructure of the poiymer medium with its

macroscopic behavior. However, little attention has been
given to make this connection for many decades.

One of the first analyses of the growth of crazing
was modeled as a continuum theory. Under a critical
tensile stress the linearly elastic material initiates crazes
which are rate insensitive.2 Several other analyses using
elasticity theory have also appeared more recently.3.4
Similar to the analysis of a craze, many craze-related
crack problems have been investigated in viscoelastic
media.5-10 The intention of these studies was to take
care of the energy dissipation which takes place in the
viscoelastic bodies not considered in the elastic theory.
The time-dependent size and shape of cracks in linearly
viscoelastic isotropic continuum media have been
analyzed. NO microstructurai nature is considered
however. Subsequently, approximate methods of
analysis have been presented and illustrated with a
failure zone to obtain viscoelastic stresses and
displacements for elastic solutions. In the analysis, in
order to satisfy the developed goverming equations, the
failure zone in the elastic probiem is modified to meet the
traction boundary condition for the crack faces. In
general, the connection between the mechanics of the
problem and the noncontinuum microstructural nature is
not made in these investigations. Therefore, in the
following example a noncontinuum craze-crack transition
is analyzed in light of the actual microstructural behavior
and the mechanics of the problem. Equations governing
the rupture of the fibrit domain structure in the middie of
the craze envelope surfaces subject to a uniform tension
is considered for an isolated craze in an infinite.
viscoelastic polymer sheet. Solutions yield both
information on the time dependent craze-crack transition
and the displacement fisld around the craze-crack
envelope profile describing the shape of the craze-crack
region. Before this is done relevant noncontinuum
information is reviewed. Justifications and significance of
using the noncontinuum microstructure are described.

TIME DEPENDENT DEFORMATION AND
MOLECULAR ORIENTATION

By incorporating microstructural information, the
deformation of a material system may be analyzed under
stresses with the help of classical continuum theory. For
some polymeric and composite systems, the deformation
processes may be characterized to contain a molecular
orientation mechanism with a microporosity sensitive to
time and temperature.

A realistic medium may be represented by a system
of microstructural elements which translate and rotate
under stressing. As shown in Figure 1, an elemental
vector dP in the reference frame XK (K= 1,2, or 3)
transforms to dp in the current frame xi (k = 1, 2 Or 3) under
a time-dependent load P{t). Then the stress tensor Jjj at
any point can be calcuiated under certain conditions. 11
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Fig. 1 Molecuiar Entangiement and Orientation in Detormation
where €| is the strain tensor,
T is the absolute temperature,
t is time,

p is the density of the probability distribution
function of molecular orientation,

6, ¢ are spherical coordinates,

t is the fraction of integrity of the
microstructional system,

€ is the origntation strain (- 1 < € < o),

¥ is the axial stress in an element,

mi, nj are unit vectors, and

dw equals sin@d@d¢ representing the solid angle

from which statistical expectation may be
evaluated.

Since the stresses are functions of the orientation
strain, it is likely that the constitutive behavior will be
greatly affected. A simple illustration is shown in Figure 2
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SIMPLE STRAIN
Fig. 2 Simple Stress-Strain Constiutive Behavior

where the nonlinear deformational behavior of an
isotropic continuum medium must be modified by the
molecular orientation behavior to give a more realistic
combined constitutive description. This no doubt will
affect the further response of the material system to
stressing such as the initiation of crazes and the stability
or instability of the system.

ENERGY STATE, TEMPERATURE AND
CRAZE INITIATION

At a constant temperature, the stability of the
homogeneous deformation of a real material system
under a simple uniform tension will eventually be upset at
some time when a specific energy state of the
microstructural system develops. The possible responses
may be described with the help of Figure 3. Under load,
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Fig. 3 Lowest Free Energy State and Deformation Behavior

the stability or instability of a material system may best be
determined by its free energy state. The material system
readjusts its microstructural configuration to maintain its
lowest energy state until certain dominating
characteristics develop. After an incubation period is
reached the material system may deform in shear
primarily as a result of the rotational motion of certain
microstructures. Thus, a simple shearing band deveiops
in the system. The material system may develop cracks
as a result of a basically translational motion of the
micrastructure including possibly the slipping and
rupturing of molecular bonds. This may be the simple
cracking of a material system. When a compiex kinetic
situation occurs, both the rotational and transiational
motion of the microstructure may take place. Crazing may
develop as a result.

For a two-dimensional craze, the isocnronous
biaxial locus for craze initiation is given in Figure 4.
Various criteria put forward to date are plotted for
comparison. Detailed information can be found in an
earfier reference.'2 Only the three-dimensional craze
initiation criterion is given below in a series form with an
as an integer constant and n an integer.
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Stress in MPa
Biaxial locus for criteria of craze initiation in polymers by:
1. Sternstein and Ongchin,
2. Bowden and Oxborough,
3. New Criterion,
4. Argon,
5. Distortion strain energy, and
6. 45° reference line

Fig. 4 Biaxial Locus for Criteria of Craze Initiation in Polymers
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where S is the magnitude of the deviatoric stress tensor S
which must overcome an intrinsic flow resistance, an are
constants, o i the constant linear thermal coefficient of
expansion, 6(T) is the temperature function, Jo(& - 1)
is the bulk creep compliance function with & = t¢(T)
and 1| = T$(T) as shift times defined by the “temperature-
time shift" principle for “thermorheologically simple”
viscoelastic media and Cijj is the time derivative of the
isotropic stress tensor. This three-dimensional craze
initiation criterion is reducible t0 any of the other criteria by
introckucing appropriate values for ap. In Figure 4 this new
criterion is by line 3 for the two-dimensional
situation. This line reduces 0 each of the other curves
mmsmwmmaq.mnm
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Fig. 5 Stress, Temperature Effects on
Craze Initiation in Polymers

MICROSTRUCTURE AND
MECHANICAL STRENGTH

Based upon the microstructural behavior and the
dynamic nature of molecular motion, the fraction of
integrity can be determined and utilized to establish a
fracture criterion for & material system. Subsequently the
connection between the microstructure and the
macromechanical strength can be made. This has been
done by means of the statistical theory of the absolute
reaction rate. Not only can the microstructural orientation
and the rupture of the microscopic structural units be
incorporated but their reformation can also be included in
the theory to obtain the time-dependent mechanical
strength particularly for long times as illustrated in Figure
6.11.13-15 This tensile strength which is the fracture
strength as a function of time has been well established
as shown. The tensile strength of a stressed solid
material system for both short or long times tends to leve!
off as shown. This means that the tensile strength
becomes independent of time for very short times as well
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Fig. 6 Microstructural Oriertation and Reformation Effects on a
Time-Dependent Mechanical Strength
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as for very long times. in between these times, the tensie
strength is linearly proportional to the logarithm of time.
The temperature effect on the time-dependent mechanical
strength is given in Figure 7 to show that temperature is
an important entity in this complex situation which must be
taken into consideration in the analysis for any material
system.
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Fig. 7 Temperature Effects on Time-Dependent
Mechanical Strength

Consider a material system composed of a large
number of randomly oriented similar molecular units or
elements which elongate and rotate in a stress field. In
order to formulate a temperature- and time-dependent
failure criterion for such a material system, one can use
the quantity {(t), the time-dependent fraction of integrity.
By calculating its time rate of change as follows:

f = Ke(1-0) - Kpt @

where Ky = wrexp{- U/RT - ¥¥(t)] is the rate coefficient of
reformation of the disconnected units and Kp =
wpexp{- WRT + B¥(1)], the rate coefficient of breakage of
the connected elements, wr and wp are respectively the
frequencies of motion with respect to forming and
breaking processes of these units, U is the activation
energy, R is the universal gas constant, and ¥ and § are
positive parameters which modify the true axial stress V(1)
in each elemental unit.

The failing of a material system is when f{
approaches zero. In these formulations, Kr and Kp, are
both functions of temperature and the true stress in
individual elements. Once a stress O is apphied to the
material system, the energy state is akered and the time-
to-break 1y can be calculated.

The fracture strength, the statistical mean strength
in the vicinity of any point in the system, has been
analyzed and found 10 be to the modulug of
individua! elements, their length and the number of the
elements per unit voume. For an oriented system, the
fracture strength is a function of deformation as briefly
reviewed in the previous section. For a fully oriented
systemt1 under a nonstant applied stress G, we may
write

Y@t =0 . )
The functional relationship between ¥ and t is

v 2 g o
VY= -?[Krﬂ -q’-) 'K"V . (5)

Integration results in the time-to-break ty. With zero initial
time
dv
b= VKot K1-¥ /0] ©

Usually near fracture, Kr becomes unimportant, and
the time-to-break may be approximated to

dyv
o = exp(UAT) [ wpYexp(BV¥) ' @
which can further be simplified to
to = Aexp(- BO) ®

with A and B as material constants.

Now let us consider the craze problem as shown in
Figure 8. Under a temperature and time dependent stress
To(T.1) a three-dimensional craze may develop from the
surface of a material body. In general the microstructure
on the surface of the material body is composed of a
network of highly oriented fibril domains drawn out of the
envelope profile and separated by cavities. This
combined structure propagates along the surace of the
material body and penetrates into the body as indicated
respectively by c(T.t) and q(T,t) which are measured from
the center of craze at the origin 0. The stress at any point
in the material is designated as O(x,xz,x3,T,t) and the
craze envelope stress by Oc(x.x2,x3,T.t) as shown,
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Fig. 8 Microstructure of a Three-Dimensional
Craze-Crack System



Fig. 9 Microstructural Formation of a Two-Dimensional
Craze-Crack System

highly oriented fibril domains. A schematic diagram of a
two-dimensional craze is given in Figure 10 to show the
pertinent quantities. For simplicity in sequel x3 is
replaced by z and x, by Xx.

Gc(x.!) =
GC(X.!) =0

wix.t)
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o b(t) a(t) c(t)

Fig. 10 An wealized Two-Dimensional Craze-Crack System

with Assumed Step Envelope Stress Distribution

ANALYSIS OF CRAZE-CRACK TRANSITION

Considering this two-dimensional model, an
analysis can be made to obtain the time dependent
displacement field and the craze-crack lengths by
incorporating the microstructural behavior into the
macromechanics problem.

Starting from the highly oriented fibril domain
structure in the craze region, the required time-to-break tp
is calculable based upon a perfectly oriented molecular
system under a constant stress C.11.15 A general curve ty
vs. O is given in Figure 6. The maximum applied stress is
indicated by O max. With reformation processes
considered, the tensile strength of the material system
begins to deviate from the dotted curve. There exists a
minimum strength vaiue O min for which & goes o infinity
asymptotically.14 Therefore for a given medium there

3N

oxists a corresponding curve between t, and the applied
constant stress . When the applied stress varies with
time, one can use the linear summation damage rule
which states that the same number of damages
accumulate during identical time intervals. Thus the time-
to-break is determinable by the equation:16
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By adopting this microstructural behavior, the
opening displacement w(xt), the craze-crack system
length c(t) and the crack length b(t) in this craze-crack
transition problem can be calculated. To facilitate the
possibility of obtaining numerical solutions, a three-step
envelope stress distribution, as shown in Figure 10, is
introduced:

o o<x<bl),
Oelx,t) = }O, b{t) < x <a(t), (10)
02 at) < x <cft).

It is hoped that this assumed step stress function will yield
good approximations in both the displacement fieid and
the lengths of the craze-crack system.1

With the three-step envelope stress function, the
stress sustained by the fibril domains in the thin mid-
section where under certain conditions, failure has baen
observed to occur more often, is

[: = Am202
= AmiC1
where Am202 is the true stress born by the fibril domains
and Am2 is the draw ratio at the stress region O 2.

Similarly Am10¢ and Ay denote the corresponding
quantities under region Gy.

aft) <x<cft),
(t1)
b{t) < x <af(t),

As discussed earlier, under large stresses, the
time-to-break t, can be obtained by first dropping K in (3)
to get (8), then introducing (11) in (9), one can obtain:

tp = Aexp(- BAm1T1)
- t2{exp[B(Am2S2-Am1C1)] - 1}

where t; is the period when the fibril domains experience
the higher envelope stress G ,.
To review briefly the time-dependent viscoelastic

probiem, the opening displacement measured from the
center of symmetry of the craze-crack system in a

(12)

viscoelastic sheet can be obtained by usirg the
well known correspondence principle in linear

The field equations are:
oyixz9 =0, (13)




€x{x.z) -g-(u Jxz) + yix.z], (14)
t
Sih= [ Gilt-T)deg(z). (15)
-00
t
(16)

Oit) = I G(t-T)dey(T) ,
-~00

where Ojj is the stress tensor, €jj, the strain tensor, uj;,
the displacement gradients, G| and G, are respectively
the deviatoric and dilatational relaxation moduli of the
original bulk medium, and the deviatoric stresses and
strains are respectively

Si(t) = 4N -3 810 (17

1
oii(t) = e4t) -3 Syewlt) . (18)
with i, j and k = x or 2 denoting dummy variables in two-
dimensional problems. The boundary conditions are
described as:

Ozx (x0t) =0, X < cft) (19)
Ozz (x0t) = O (x1), x| < ¢ft) (20)
Ozz(x,2.t) = Oo(t) ,
Oxx(x,zt) =0, as (x2+22) -->00 .  (21)
Oxz(x.zt) =0,
The opening displacement wy(x.t) is defined by
Wo(x,1) = uz (x,01), Xl<c(). (22)

To solve this viscoelastic problem. The Laplace
transform with respect to time is applied to alf of the fieid
equations and the boundary conditions. The solution to
the transformed equation can be found by using the well
established complex variable conformal mapping method
or the complex variable stress function method for elastic
medium.

The time dependent solution of the problem is
obtained by Laplace inversion. This soltion is valid only
if the boundary conditions are independent of time, i.e.,
~1), b(t) and Gg(x.t) remain unchanged. These
restrictions can be removed by using a sequence of
loading and unloading steps,!? which yiekds,

t
wolx.t) = Cp(0)@(x.t) + [Cpi-1:Ax.TMT
o

where

¢
O(x1) = SVTTT - £ [Tl 1) IncrVSF-E7 0L
[-]

(23)
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+5 [oolly Inkak, (24)
X

Colt) = L' [(2(2G1+Gp)) / (82G1(G1+2G,))] (25

with L™ designating the Lapiace inversion and barred
quantities being in Laplace domains.

If the strain ratio v is constant, Cp(t) reduces to
Colt) =L [(2(1 - 82v?)) / $2E ] ,

where E is the relaxation modulus of the original
unoriented bulk polymer medium.

(26)

Taking into consideration the thickness of the
primordial layer from which the fibril domain structure has
been pulied out, the actual opening displacement of the
system becomes

t

wix.t) = Cpl0)®(x.1) + j Colt-T)0(x,T)dT
(+]

W (x T)
+ I : 27
tx

AxT)OC

where ty is the time when the tip of the craze-crack system
first reaches the point x, ) is the draw ratio. Since the

midsection is relatively thin in a craze, the A function can
be taken as

A, b(t) <x <a(t)
NX.‘) = [

Ame . af) <x<cft),

where A, is the draw ratio outside the mid-section under

the envelope stress o (. The opening displacement
finally is obtained as

wix) = i—’."!—':'f-‘-(c.,(o)o(x.t)

(28

t

+ ] Colt-T)0(x.T)dT], forat) <x<clt), (29)
o
t

wix.1) -;}%lcb(o)o(x.t) + J Colt-T)0(x,T)d7]
"

"ﬁ‘ﬁ'{"""’"' forb(t) <x<af®, (30)

t
wixs) = Colo)d(x) + | Coft-T)O(x.T)IT
o
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where tg and tp respectively denote the times when a(t)
and b(t) arrive at the point x.

CRAZE AND CRACK LENGTHS

With regard to the length of the craze-crack system
and that of the crack, suppose that the fibril domain
nucieation rate at the craze tips is proportional to the
growth velocity ¢(t) of the system. Then the energy rate
required for the growth of craze tip is I'c¢(t) and that for
the crack tip is b (t), where ' and 'y, are material
constants. Based upon the assumption that the rate of
energy required for drawing the fibrils out of the craze
surface envelope is proportional to the rate of creation of
the new fibril domain surface S(t), using the
proportionality constant Ty, the following local energy
balance equation can be written as:

He(t) = TeC(t) + Tub(t) + TsS(1)
+ Un(t) + Dy(t) + Kott) (32)

where Hc(t) is the energy absorption rate of the quadrantal
portion of the craze system, U,(t) is the strain anergy
absorption rate of fibrii domains, D,(t.) is the energy
dissipation rate by the craze fibrils. and K(t) is the rate of
kinetic energy due to the motion of the craze fibril
domains. Uy, D¢ and K¢ are negligible when compared
with the other rate quantities in the quasi-static conditions.
With this simplification and the terms expressed by
elementary parameters defined earlier, the following
equations can be established. Since the stress each fibril
domain sustains is AU which equals O/Vyif Vyis the
volume fraction:

[+
. ow
)= J Oolxt) Tk ax, 39
(]
[
- [ 43 B 2e. e
0

where d(x.!) is the time and position dependent diameter
of craze fibril domains. Now using these, Equation (32)
becomes an implicit nonlinear differential equation of the
craze-crack system length c(t) and the crack length bit) as
follows:

[+
[ (Co-a 2Dy _rars. o
(+]

This implicit differential equation has three
unknown quantities, a(t), b(t) and c(t) to be determined. In
equation, some subsidiary equations
are necessary. One of them is that? the craze envelope

stress O¢(x,t) must balance the applied external load
corresponding to an applied simple tension O to ensure
that the stress field within the uncrazed bulk material is
finite everywhere for all times t. In mathematical form this
means:

c
x.t) x

j Selxl) dx=50o. (36)

o V¢ (t)-x

When the three-step envelope stress function (10) is

substituted in, it yields:

[Xe)
aft) = cft) sm(;-# e o‘ sin-! 2(" ). @

The other equation is from the consideration of the
nature of the failure of the craze material, which obviously
provides a relation between the craze-crack system and
crack lengths,

by =c(t-t). (38)

It should be noted that the time-to-break 1, is spatially
dependent and it is evident that

b(t) = c [t - ty(b{(1))] - (39)

RESULTS AND DISCUSSION

Generally speaking, c(t) and b(t) can be obtained
as functions of time by solving Equations (35), (37) and
(39). But it is still rather complicated because of the
unusual form of Equation (39).

If the craze-crack system and the crack propagate
steadily without drastically change in their propagating

speeds, Equation (39) can be simplified to the following
form

bit) = ct) - K<) , (40)

wgere t, has been evaluated and displayed as Equation
(12),i.e.,

tp = Aexp(-BAm10,)

- t2{ exp[B(Am202 - AmT1)] - 1}.
Usually, the distance c(t) - a(t) is relatively small since
it is associated with the region of stress concentration.
Thus t, can be expressed as

ta=(c-a)/¢. (41)

Using the envelope stress profile proposed earlier,
Equation (24) turns out to be

aycZ-x? - xycZa?
- $Gz0 i avoTx? « xyoial

.o th-xdc!-b’
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Since the product of the average fibril domain diameter

and the envelope stress has been found to be constant,
that is, d ;O | = d,0, = constant, thus let

dy, b(t) <x < a(t),
da(x,t) = [ (43)
d2, aft) <x<cft),

and noting that V;= 1/A and Equation (32) then, by
substitution, Equation (35) becomes

a
4[‘5 ow N .
+(ord—‘,ﬂ)bj St Ox=Tc+Tob. (44)

Since &(c, t) = 0, obviously,

Am2
Amz-1

Caw
| Fr o= ot (ColoNad(@
a

c
+5 [onan
a

c
+ Co(0)® (x,t)dx
a

[+]
+ [ j Co(t-T)0(x, T)dTAx } , (45)
ao

a
w
—_— dx =
bf 2

P

{Cul0) [bO(b.Y) - ad(a)

td

-1

a
+ | Co(0)®(x.t)ax
b

t

a
+ | Colt-T)O(x, T)TAX } . (46)
b o

Introducing the notations

Cc

®a = | Glxiox, @n
a

a
Oy = b‘[ O(x.t)dx , (48)

and substituting them into (44), we have

Kqa(t) + Kob(t) + K3C(t) + Kg=o0, (49)

where
a¢ a¢
K1 =Cololl (Iz-1)0@) + o35+ Irg 2], (50)
ad 99
Kz = Colo) Iz + il 80N + 22 B-To, ()
® ad

Ky = Colo)lr s 1y 22) - T (52)
and

Kq = Co(0)(12®ac + 11Oba)

t t
+1p [ CpltT)0ucdT + 1y | Colt-T)0padT .  (53)
o

o

with 1, and I, being constants, and

4al's . Ay
Iy = (C)"-d‘)“ ))‘|_1 ' (54)

41‘, Amz
|2 = (OZ'dzxmz ) Amz-1 (55)
The explicit forms of those quantities in expressions
of K's are given in the Appendix.

The calculations should be divided into two steps.
First, the original craze es during the absence of
a crack. This can be calculated by simply setting b(t) = 0
in Equations (38) and (44), which degenerates into the
case discussed earfier.” After certain time elapses, the
fibril domains first produced in the mid-section of the craze
breaks down and crack commences. Second, the crack
comes into play and the Equations (38), (41), (42) and
(44) must be used to calculate simultaneously the
propagations for both the craze-crack system and the
crack.

Now to iflustrate the changes of a craze-crack system
in polystyrene, a Voigt solid is taken as an example. The
material properties are taken to be18-23



J(t) = {29 + 5.09[1 - exp(-1)] + 2.32[1 - exp(-t /10)]
+6.59 [1 - exp(-t /102)] + 12.72[1 - exp(-t /10%)]
+ C.71[1- @xp(-t /105)] + 14.71 [1 - exp{-t/106)]
+1.02 [1- exp(-t 107)]} - 105 m2Z/MN,

A = exp(11) secs, dy=20nm,

B = 0.05 m?MN, dz=10nm,
A= 20, Fg=0.1254/m2,
Am = 25, I,=0.085J/m2,
Am2 = 4, Fp=300J/m2.

v for polystyrene is 0.395, a constant, and the applied
stress is considered to be 36 MN / m2, that is: O = 36
MN / m2, In addition, based upon some experimental
evidence, O, and O, are assumed to be respectively
40 MN / m2 and 80 MN / m? for numerical calculations.

The normalized length of the craze-crack system
and that of the crack are shown in Figure 11. where the
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Fig. 11 Time-Dependent Crack and Craze-Crack
System Lengths

normalization is made with respect to the initial length of
the craze-crack system. The opening displacements at
different times are plotted in Figure 12.

For ease of visualization, the normalized craze
length as a function of time is also given in re 13. The
non-knear nature of the craze behavior is self-gvident.

As can be seen from the calculations, both the
velocities of the craze-crack system and that of the crack
become larger and larger. Thus further calculation is not
accurate since the unsteady propagation gives rise to
irregular growth, branching and/or bifurcation. These

T

complex phenomena are yet to be considered in the
future analyses.
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Fig. 12 Nonlinear Crack and Craze-Crack Length Behavior
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REMARKS AND SUGGESTIONS

From the review of the connection between
microstructure and macromechanics as well as the
analysis of the craze-crack transition it is seen that, in
general, the complete fracture processes take time to
develop and mature. Depending upon the degree of
energy absorption by the microstructure of a medium,
shear flow, craze or crack may occur. if craze occurs first,
then the trangition from craze to crack is kkely to be highly
nonlinear. Results are important in studying the time-
dependent strength and fracture behavior mgymodc
and composite systems. By averaging all the SCOPIC
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behavior specific in each molecular orientation, a fracture
criterion may be established to analyze the time and
deformation dependent breaking strength of an oriented
polymer solid. Utilizing spherical functions and the
double Fourier series expansion, the statistical
microscopic behavior in the vicinity of 2 point in an
oriented medium may be conveited into several
symmetric tensorial terms. Then the time-to-break can be
synthesized and incorporated in calculating the
macroscopic behavior. By taking into account the
individual values of the directional fraction of integrity, the
fracture time as well as the most probable direction of
fracture initiation within any volume element in the
medium can be predicted. However, results thus obtained
governs only the localized behavior of a material. For a
layered composite system, the interactions among craze-
crack regions must also be determined. Perhaps a joint
distribution function of the characteristic parameters can
be introduced to obtain the final analytical result of the
strength and fracture of a composite system. In addition,
since the material systems are viscoelastic,
measurements of temperature fields in and around a
craze-crack systam are extremely important in connecting
the properties of the microstructure and the analysis of the
energy dissipation of the macromechanical behavior.

APPENDIX

Substituting Equation (42) into (47) and (48), yields

a
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Differentiating (A1) and (A2) yields

b, ¢%-2a2

o) JeTat

30py 1
528 (020 Nsin1S- s

. GO m\k ’::_2 -a-4aind)
aVeZ b? - bVcZa
-(0z200@In T .« bvcia

NcZp? - JcZaZ
b, Vi

a1 cin18. gin-12) 2202
—aF—:;[O](SIn ¢ - sin C)W

\ch-a! 2
-o’;(a‘E—_z—b!- -b-4bing)

aVcZ-b? - by cZ-a?
- -, "———_
(02:20,)(b! a\/c!-b"' + by c2-a?

_ain VcZ-p? - \¢c%-a? 1
anycZo? + veZzaZ? ™’

(A3)

(A4)

90pa 1

a b .
e =;{[(02'°‘)W+ G'W ]
(sin-‘cE - sin'1% )e

a? b? ab
020N 0T T

(G20 W02 - Gya?- (02-204)c?) , (A5)

30 ,c ¢2-2a2

S = (620

a a
1= =
cos c-|»a4-4alnc)

+ o YETBL - VAT
oI eTb? ¢ veZat ’

aQac g—L c2-2b2 48 W
3 % (JeZpr ¥ ¢t Tor
avcZ-b? - bycZ-a?

'"__
aycZ-b2 + bycZ-a?

\NcZ-0? - JcZa?
+alnﬁT— W)' (A7)

(A6)

-b

ad
Tc& -%{[(62-01)——,5;? + d|—Eg_—gl°°°r‘§

2 .b‘\’a 2
. (02‘51)‘? -0, oNcib? }- (AB)



ACKNOWLEDGEMENTS

The author wishes to thank the scientists of the Air
Force Office of Scientific Research for their partial support
of this research. The analysis of the craze-crack transition
problem was carried out by H. S. Hou. He has spent a
great deal of time to obtain the aRumerical results for the
problem.

REFERENCES

1. Hsiao, C. C. and Sauer, J. A., "On Craznng of
Linear High Polymers,” , Vol.
21, No. 11, Nov. 1950, pp. 1071-1083.

2. Knight, A. D., "Stress Crazing of Transparent
Plastics. Computed Stresses at a Nonvoid Craze Mark,"
, Part A, Vol. 3, 1965, pp.

1845-1857.

3. Warren, W. A, “Stress and Displacemert Figlds
at the Tip of a Craze Containing a Crack,"
, Vol. 24, No. 10, July 1984,
pp. 814-819.

4. Walton, J. R. and Weitsman, Y., "Deformations
and Stress Intensities Due to a Craze m an Extended

Elastic Material,” Journal of Applied Mechanics, Vol. 51,
March 1984, pp. 84-92.

5. Williams, M. L.,
Viscoelastic Fracture,”
ics, Vol. 1, No. 4, 1965, pp. 292-310.

'lpitiation and Growth of

6. Willis, J. R., "Crack Propagation in Viscoelastic
Media,” , Vol.

15, No. 4, 1967, pp. 229-240.

7. Graham, G. A. C., "The Correspondence
Principle of Linear Vuscoelastucny Theory for Mixed
Boundary Value Problems Involving Time- -Dependent
Boundary Regions,” , Vol.
26, No. 2, 1968, pp. 167-174. "Two Extending Crack
Problems m Linear Viscoelasticity Theory,” Vol. 27, No.
4, 1969, pp. 497-507.

8. McCartney, L. N., "Crack Propagation, Resutting
from a Monotonic Increasmg Applied Stress, in a Linear
Viscoelastic Material,” [nterpational Journal of Fracture,
Vol. 13, No. 5, Oct. 1977, pp. 641-654.

9. Schapery, R. A, "A Theory of Crack Initiation
and Growth in Viscoelastic Media,”
of Fracture, ). Theoretical Development, Vol. 11, No. 1,
Feb. 1975, pp. 141-159. 1. Approximate Methods of
Analysis, Vol. 11, No. 3, June 1975, pp. 369-388. Ill.
Analysis of Continuous Growth, Vol. 11, No. 4, Aug. 1975,
pp. 549-562.

10. Schapery, R. A., "A Method for Predicting Crack

Growth in Nonhomogenoous Viscoelastic Media,”

, Vol. 14, No. 3, June

1978, pp. 293-309. "Correspondonoo Princuples and a

Generalized J integral for Large Deformation and Fracture

anlysls of Viscoelastic Media," Vol. 25, 1984, pp. 195-
3

ﬁ

37

11. Hsiao, C. C. and Moghe, S. R.,
“Characterization of Random Microstructural Systems,”

- 1 ;
Ciyil Engineering Materials, Southampton, England, John
Wiiey, London, Part I, 1971, pp. 95-103.

12. Chern, S. S. and Hsiao, C. C.,, "A
Generalized Tume-Dependem Theory on Craze Inmatron
in Viscoelastic Media,” , Vol.
57, No. 6, March 1985, pp. 1823-1834.

13. Hsiao, C. C., "Fracture,” Physics Today, Vol.
19, No. 3, March, 1966, pp. 49-53

14.  Kausch von Schmeling, H. H., Mohge, S. R.
and Hsiao, C. C., "Influence of Reformmg Processes on
the Fracture Strength of Solids,”

Physics. Vol. 38, No. 1, Jan. 1967, pp. 201-204.

15. Moghe, S. R., Kawatate, K., Cheung, J. E.
and Hsiao, C. C., "Mechanical Breakdown of Oriented
Solids under Tme Dependent Loads,"

, Vol. 1, Oct. 7-

11, 1968, Kyoto, Japan, 1969, pp. 595-606.

16.  Kuksenko, V. S. and Tamuzs, V. P.,
Mamnus Nijhoff
Publishers, Hague, Boston, t.ondon, 1981 Chapter 7.

17. Chern, S. 8. and Hsiao, C. C., "A Time
Dependent Theory of Crazing Behavior in Polymers
[ , Vol. 63, No. 10, Oct. 1982, pp.
6541-6551.

18. Kramer, E. M
Breakdown,”
No. 10, July 1984, pp. 761-769.

"Craze Fibril Formatron and
, Vol. 24,

19. Doll, W., "Kinetics of Crack Tup Craze Zone
Before and Dunng Fracture {
Science, Vol. 24, No. 10, July 1984, pp. 798-808.

20.  Verheulpen-Heymans, N., "Craze Failure by
Midrib Creep,” ., Vol. 24,
No. 10, July 1984, pp. 809-813.

21.  Williams, J. G., "Modelling Crack Tip Failure
Mechanisms in Polymers,” Metal Science, Aug-Sept.
1980, pp. 344-350.

22. Chan, T., Donald, A. M., Kramer, E. J., "Film
Thnckness Eﬁects on Craze Mrcromechamcs Journal of
. Vol. 16, 1981, pp. 676-686.

23. Zhang, 2. D., Chern, S. S. and Hsiao, C. C.,

Propagatron of Crazing in Viscoelastic Media,”
e , Vol. 54, No. 10, Oct. 1983, pp. 5568-
6.

R SN



reprinted from

published by

Dsmage Mechanics in Composites — AD-Vol. 12
Editors: A.S.D. Wang and G.K. Haritos
{Book No. G00376)

THE AMERICAN SOCIETY OF MECHANICAL ENGINEERS
345 East 47th Street, New York, N.Y. 10017
Printed in U.S.A,




ANALYZING POLYMER CRAZING AS QUASIFRACTURE
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ABSTRACT

This paper'deals with a viscoelastic boundary éiement methsd for analyz-
ing a polymer quaéifracture termed earliér as a craze in polymers. A time
dependent boundary stiffness is considered dn the quasifracture envelope sur-
face. The viscoelastic property of the glassy polymer is represented by a
generalized Kelvin model with multiple retardation times. According to the
linear viscoelastic correspondence principle, the associated elasticity solution
can be solved by applying the general integral boundary element method. Then
the viscoelastic solution in the time domain can be obtained by applying collo-
cation Laplace inversion transformation. Using these methods, the quasifrac-
ture problem composed of an isolated craze opening with time dependent stiff-
ness traction in a stressed rectangular plate is analyzed. The displacement

profile and the stress distribution around the craze envelope surface are com-

puted.




INTRODUCTION

The craze or quasifracture behavior of glassy polymers has been studied
by many scientists using theoretical and/or experimental methods recently
[1,2,3). Only a few papers reported the linear elastic quasifracture behavior
using numerical methods. L. Bevan [4] applied both the elastic finite-element
method and boundary-elcment method with linear boundary condition for investi-
gating the craze problem. Recently, using the nonlinear finite element method, -
the stress aistribution around t;,he envelope surface and theﬁ displacement pro-
file associated with a craze has been reported [5]). However, since the boun-
dary element method has currently become a powerful tecfmique for solving
boundary value problems including some nonlinear ones, it is worthy of utiliz-~
ing, as it has several advantages over the finite element method. The number
of unknowns in the calculating system depends only on the boundary discretiza-
tion rather than upon the discretization of the whole volume of the material
body as in the finite element method. The singular kernels in the integral
equations weigh the unknown quantities near a singular point more heavily as
compared with those far away and the resultant matrices are generally well
behaved. The physical quantities obtained by differentiation of the ﬁrimary
varjables such as -t.he stresses obtained from displacementsA are determined
pointwise inside a_r_\d on the body. ‘Thus there is vless chance to have discontin-
uities. This is esheciallyﬁimportant in problems having viscoelastic deforma-
tions and, in particular, viscoelastic fracture mechanics problems [6]. In
addition, this method takes less computing time and yields greater accuracy as
compared with those problems analyzed using the finite element method under

somewhat similar situations. Therefore, in the case wherein highly localized
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stresses may exist, more elements can be introduced so that any possible sin-
gularities will not be suppressed by the analysis. As the quasifracture beha-
vior of crazing is important for studying engineering plastics and polymer com-
posites, in this paper, a viscoelastic boundary element method for analyzing
the polymer quasifracture and determining the displacement field has been dev-
eloped. In this attempt emphasis is placed on the procedural development of
the method. Actually measured displacement field obtained earlier has been
employed [3] in the computation.

It is weli known that glassy polymers behave viscoelastically. Using the
correspondence principle in linear theory of viscoéiasticlty. the qQquasifracture
behavior of a poiymer can be calculated from the solution of an associated
elasticity problem by means of numericallmethod, then inversion yields the
required time dependent response. Therefore, in this paper the boundary ele-
ment method is applied to solve the associated elasticity problem in the
Laplace domain. By applying the numerical Laplace inversion technique devel-
oped by Schapery [7] and Cost [8], the associated elasticity solution can be
transformed from the Laplace domain back into the time domain. There are sev-
eral reports dealing with the use of the viscoelastic boundary element method.
For simple specific viscoelastic models, Takashi Kusama and Yasushi Mitsui [9]
developed an improved collocatior_n method and appl;ed_the boundary element
method to solve a Kelvin viscoelastic model. Riz?o and Shippy [10] used the
direct boundary integral method to solve a;standard linear vxscoglastic model.
wéng and Crouch [11] applied the displacedéﬁ£ discontinuity boundary elemént
method and collocation inversion technique to solve a rock mechanics problem
represented by a Burgers model. In this paper the general boundary element
method together with the collocation inversion technique is used to solve an

isnlated quasifracture having a generalized Kelvin model behavior with multiple
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retardation times. In using such a method the prescribed boundary condition is
either the displacement or the traction condition. For a quasifracture problem
the boundary condition on the craze envelope surface is prescribed in a stiff-
ness form. By considering the molecular orientation mechanism [12] of the
craze fibril domains, the boundary displacement of a craze envelope surface
may be represented by a convolution integral. Then the displacement field and
the stress distribution along a craze surface envelope can be calculated in
several time steps. It is_ interesting to show that the calculated resulting
stress distribution along the craze envelopé surface did not change very much

with respect to initial zérortime and several hundred hours.
FUNDAMENTAL BOUNDARY VALUE PROBLEM

The governing equations for the quasifracture boundary value problem are
the equilibrium equations in terms of the stress components 0ij» relations
between displacements uj and strain components €ij together with a set of con-
stitutive equations. The stress and displacement fields must satisfy the pre-
scribed boundary conditions on the craze envelope surface and other boundaries.

They are, in a rectangular coordinate system (0-x,,x,,X;):

91j,j (X1x3,t) = 0, m

€ij (X;.x,,t)-= % [ui'j(x,,x,,t) +uy,i(xx,, ) 0 - (2)

The constitutive equations can be written in integral form as:
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3S
eij(t) =[ J(t-1) —%—Q dT, (3)
t
30Kk ( 1)
€kk(t) = B(t-1) —3 dt, )

. where J(t) and B(t) are respectively the creep compliance functions in shear

. and isotropic dilation or bulk creep compliance; Ok and € are respectively

ij
and

the hydrostatic stresses and strains by implying the summation conventjon., S
and eU are respectively the deviatoric éombonents of streés tensor °ij

strain tensor ei;j and are related with 6t;her stress and strain components as

follows:

1
Sij = oij - 3 61j%k» (5)

1
eij = €ij ~ 3 6ij€kkj (6)

where éij are delta functions.

In a linear viscoelastic polymer, a very good approximation {3,13,14] for
t-.he tensile creep compliance D(t) {s obtainable using a generalized Kelvin
model composed of a seriés of V;Jigt élements or-simpiy it can be mathemati-

cally represented in the following form:

n
D(t) = Dg + ) on[1 - exp(-;t:'-)]. (1)
n=1 : n ’
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where D, and D, are constants and 1, are discrete retardation times. Now if

one adopts the notation and definition that

?(x,.x,.s) = [ f(x.,x,,t)e-St‘ dt, (8)

where ?(x,,x,.s) is the Laplace transform of the time dependent function
f(x,,Xs,t) with s as the Laplace parameter, then it can be shown that the shear
and bulk créep compliance functions can be obtained through Laplace inversion:

J(t) = L™YJ(s)) = LM (1 + sw(s))Xs)] , (9)
B(t) = L™B(s)) = L™[(1 - 2sv(s))B(s)] , (10)

where Vv(s) is the Laplace transform of the time dependent strain ratio. it is
to be noted that in analyzing a problem involving the time dependent viscoe-
lasticity, w(t) is time dependent. The quantity Poisson's ratio in classical
theory of elasticity is meaningless in viscoelastic behavior, thus w(t) is
termed strain ratio. Experimental results {15] have shown that the strain
r;atio v(t) bec-ame4approximaté1y a constant for long creep times. With this in-
-formation, the viscoelastic tensile relaxation modulus function E(t) can be

shown as: =
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E(t) =L™? ? = L™! ? . (1)

s%(s) n 1
30 ¢+ 2 DPn 7o)
n=1 n .

In the craze region, oriented molecular domains and voids are formed as
shown schematically in Fig. 1. Since the domains are composed of groups of
connected fibrils of molecules, they bear load and are subjected to large
deformations. When a craze elongates its displacement field in the direction
of str_essing also increases. While a part of the contribution of the displace-
ment field is because of the creeping of the fibril -domains, the major contri;
bution comes as a res;xlt of the drawing of the molecules from the bulk of the
polymer. This drawing mechanism coupled «#ith a simultaneous neckdown of the -
fiber domains dominates the 1local well known crazing behavior composed of
molecular orientation mechanism and formation of porosities. A local strain
field € (-1 < ¢ < = defined as A - 1 where ) is the draw ratio) identifies the
degree of molecular orientation termed the orientation strain and has been
found essentially constant [2, 3, 16] throughout the craze length as it is in-
timately associated with the natural draw ratio of the polymer. During the
process of deformation, the stress state of an individual fibril domain is con-
-sidered as uniaxial tension. Under a_uniaxial stress gss(x,,t), a corresponding
small strain e,,(x,,t) << e(x,,t), the orientation strain, of a fibril domain
will occur.- The relationship between the small strain and- the tensile stress

of each fibril domain at x, is:

t 3, (x4, 0 :
osj(xlyt) = Bf(X|gt - T) '_TT— dT' on Xy < C, XKy = 0' (‘2)




where Ep(t) is the viscoelastic tensile relaxation modulus of the fibril domain
while the orientation strain € contributes no additional stress. In prepara-
tion for computation using boundary element method the traction T,(x,,t) acting

on the craze envelope at x, may be written as follows:

t
3U,(x., T)
T (x),0) = K(x,,t-1) 5 dt

-

t

= K(x,;0) Uy(x,,t) *J k(x,.t-r) Us(x,, 1) drx, on x; £¢, Xy =0, (13)
o

where U,(x,,t) is the opening displacement measured from the horizontal center
line of symmetry of the craze corresponding to e,,(x,,t) at the boundary of the
craze envelope at x, {2} as the thickness of the primordial layer is small as

compared with U,. By writing

Eglx,,t)

Kx®) = gm0

(0st <=, W

then it Dbecomes the stiffness per wunit area of a craze fibril domain.
K(x,0) = K(x,,t)|¢=p is the initial ‘stiffness at x,. Now we use the convolution
integral relationship (13)‘as the boundary condition on the craze envelope.
The tensile creep compliance Dg(t) of a fibril domain can be found. By refer-
ring to the molecular orientation theory [12], Athe tensile relaxation modulus

Er(e) of a fibril domain may be represented as follows:
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Er(e) = C(e)E (15)

where, as stated before, €, the orientation strain, is essentially a constant,
thus, C(e) being a function of the orientation strain is also a constant and E

is the modulus of elasticity of the original polymer medium. Therefore, if the

time dependency is introduced as given in the following equation:
both the nature of molecular orientation and the time pependent yiscoelastic

4 behavior of the moduli are preserved. In the Laplace domain, treat C(g) as

constant, then

Ef(e,s) = C(e)E(s), an
and
1 s?E(s)D(s) = 1. (18)
H ) For Aindividual fibril domains a similar relationship .may be written as
” ; ) 7 | sTEp(s)De(s) - 1, | _ 7 (19)

where Bf(s) is the tensile creep compliance function of the fibril domain in

the Laplace s-domain. Solving for Dg(s), one gets

De(s) = c™He)sE(s)]™Y, (20)
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or
| De(s) = C™e)D(s). (21)
Thus after inversion
De(t) = C™*(eID(L). (22)

At position x,, let us write

n

Dr(xy,t) = C™Mx,,€)D(t) = C™x,,e){Dy + Z Dpl1 - exp(-t/1y)ll, (23)
-1

where
C™'(x,,€) = Dp(x,,0)/D, (2u)

is a spatial parameter, then the stiffness becomes:

E{(x.,s) -K(x,.O)D;
- Kix,,t) = L™ |- « L7 —————1 . (2%)
v U4(x,,0) s53D(s)
Ang the traction T,(x,,t) acting on the craze envelope surface equals:

Tyxpt) = L7 sK(x,,5)0,(x,,8)] . (26

TTARBA L S BIU T B b ceni e




-‘ll-

According to the correspondence principle in linear viscoelasticity, we
can transfer the boundary value problem of quasifracture into the s-domain
merely by replacing the elastic parameters by their corresponding time depen-

dent viscoelastic parameters in the Laplace domain s as follows:

E » SE(S)-

K » K(x,,0)D,/s*D(x,,s),
27)

(Tplo + (Ty)ols) = (Tj)o/s,

(Uj)o + (Tj)ols) = (Ujlo/s,

where (Tj)g and (Uj), are respectively the prescribed constant boundary trac-
tion and displacement at point i. Once the associated elasticity solution is
obtained, then the Laplace numerical inversion will yicld the time dependent

solution of the problem.

CALCULATING PROCEDURE

In order to solve the associated elastjcity problem, the general integral
boundary element method may be applied. The detailed investigation of these
methods and others may be found in the literature [17-19]. For simplicity
only one approach is utilized and the basic formulation for the linear elasti-
city problem is described here. In the two-dimensional elastic continuum R

with boundary T, which is assumed to be isotropic without body force, the gov-

Sl e e = = s e
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erning equation may be obtained from pages 125 and 126 of reference [17] as

follows:

cy, +] TikUx dT =[ UpkTk df,  (k,2 = 1 or 3) (28)
r r

where Cl = 172 for point ‘1 when it becomes a boundary point on a smooth boun-
dary, Uik is the displacement in the k direction due to a unit force acting in
the 1 direction at point i, Uy is the displacement at any point on the boun-
dary T in the k direction, Ty is the traction at any point on the boundary I in
the k direcitbn. and Tik is the traction in the k direction due to a unit force
acting in the & direction ét point i. The fundamental solutions for the two
dimensional isotropic plane strain problem are easily written following the

equations given on pages 126 and 141 of reference [ 7]. They are

® 1 1 ar ar
Uge = LT ERETRD] [(3 - Uv)dg_kln(F) + 5;;" a‘;;] ,

L -1 ar - ar_ or . _ _ ar _ o
T = mprr=ar et 7 28kt 2 i ) - O - 29 I e - g

ngl}l,
where G, v are elastic shear modulus and Poisson's ratio respectively ahd ng
is the outward normal to. the boundary and r is the distance from the load
point to the point under consideration. Equation (59) is known as the Kelvin's
singular solution due to a point load in an infinite _lastic medium.

At first, the boundary T was divided into N elements with assumed con-

stant values of Uy and Tk in each clement. By applying the viscoelastic cor-
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respondence principle, the following equations are obtained in the Laplace

domain:

N N
i= i — —y = — —_— = K, L =
cigl « Y [ Thli df = 2 1 Ul Ty dr, gq Ll 3; (30)
a=1 I a1 I e

As shown above there are 2N simultaneous algebraic equations. When 2N
boundary tractions and boundary displacements are given another 2N unknown
boundary tractions and boundary displacements can be obtained. For some boun-
7dar'y elements, beginning «, say, such as l‘q (q = o5....N), on which the stiff-

ness boundary condition was prescribed. Equation (30) will become as follows:

a-1 N
Cil-j; + 2_ ’ TEkUk dar + z ] (:I-‘Ek - KkUik)Uk dr =
r r

UfxTk dr, (@ =1, 2eeeenettennns.N) (31)
q

L[}

Fe] Q
] ]
—_—
)

By -solving the above simultaneous algebraic equations, we can obtain the
" values Uk and Tk successively for discrete values in the Laplace domain.
Based upon the thermbdyﬁamic principle, Schapery [7] developed a collocation
method of numerical Laplace transform inversion. This method shows that the

components of stress and displacement at any point can be represented by a

series F(t) defined as follows:

s €. . -




M
F(L) = Cy + Cit + ) Age 07, (32)
m=1

byt

where C,, C,, Ay and by are constants. Taking the Laplace transform of Equa-

tion (32) and multiplying by the transformation parameter s gives:

» ST B Cz % Am
F(s) = C‘ + -; + 1 TT-bn]—/sg. (33)
m=

A " When time t goes to infinity the function F(t) should be finite. Therefore, .
the constant C, is chosen to be zero. In order to determine the constants in
this equation a value for M and a sequence of values of s must be selected,

i.e.:
s = sg , (B=1,2,-"+" WM+1), (3)

Based wupon Schapery's suggestion, the relationship between s and t is

s = 1/2t. The M values of by are taken to be the first M+1 values of s. Then

k Equation (33) can be written:
| .
. . M . N
- - Ap o
SgF(sg) = Cy + 2_1 T bg/5g (8 =1, 2,000 M, M+1), (35)
m=

which is a set of Me¢1 linear algebraic equations with M+1 unknowns C; and Ap

solvable using standard procedures. The guidelines for selecting the discrete
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values of s can be found in Rizzo and Shippy (10].

BEHAVIOR OF A CRAZE

According to the aforementioned theory and method, an illustratijon is
provided by calculating the displacement field in the neighborhood of a hole in
a linear viscoelastic infinite plate. The load applied was expressed as a step
function. The contour of the circular hole has been divided into 24 boundary
elements as shown in Fig. 2. The radial displacements calculated by either
the viscoelastic boundary element method or an analytical solution are éhown
in Fig. 3. "The radius of the hole is 3 m. The apblied internal prvessure is
100 MN/m%. For linear viscoelastic behavior the tensile creep compliances of
the.material was represented by a generalized Kelvin model with multiple ret-

ardation times, as shown below:

D, = 0.238 x 107° m%/MN, v = 0.33,

D, = 0.071 x 10”2 m?/MN, 7, =1 hour,
D, = 0.062 x 1072 m?/MN, 17, = 10 hours,
Dy = 0.045 x 107 m2/MN, 1, = 80 hours,
D, = 0.031 x 107® m*/MN, 1, = 110 hours.

As seeh in Fig. 3, the computed data by the viscoelastic boundary element
Illet;IOd produced excellent agreement with the analytical reéults obtained by
transforming the claséical elasticity solution ot‘.a circ;xlar hole in an infin-
ite p»late into a time dependent solution in linear viscoelasticity using the
well known correspondence principle.

Now for studying the quasifracture, an idealized symmetrical craze in a

constant stress field has been considered. The craze basic structure was rep-
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resented by a slit with fiber domains distributed along the craze envelope
boundary. The distance between the top and the bottom craze envelopes has
been referred to as the craze opening displacement measured from the center
of symmetry. The stress acting on the interface of the craze was referred to
as the craze envelope stress. The total craze length considered was 2 mm
thus ¢ = 1 mm, which is usually referred to as the craze length measured from
the center of a craze. The width of plate was B = 11.2 mm and the length of
the plate was L = 14 mm with unit thickness throughout. Because of symmetry,
a quar;:er_ot the plate cont;aining an isolated quasifracture was divided into 58
boundary elements as shown in Fig. 4. The properties of the bulk material was
again represented by a generalized Kelvin model. The tensile creep. compli-
ances Dp, retardation times 1 were given as before. The shape of the applied A

stress p, was a unit step function H(t) modified to 42 N/mm2. The boundary

conditions used on the plate are:

t aU,(x,, 1)
Tyx,t) = K(x,,t-1) —s— dt

o at

(x, Se, x;=0), (36)
Ti(x,,t) = O
Us(x,,t) = O

(c £x, £B, x,=0), (37)
T,(x,,t) = O
Ti{x,t) = O _

(x, =B, 0 < x,5L), (38)
Tsx,t) = O




Ti(xs,t) = 0

(0 £x, £€B, x5 =1), (39)
Ta(x1,t) = poH(t)
Uy(xs,t) = O

(x, = 0, 0S8 xq4 £1L). (40)
Ty(xst) = O '

Initially by using the finite element method and considering the molecular
orientation of the fibril domains in the quasifracture [4], the initial instan-
taneous craze opening disfrlacement U,(x,,0) and the craze envelope stress
1 » 0c(x,,0) have been calculated. They agreed fairly well with the experimental‘
results. Subsequently the instantaneous stiffness K(x,,0) was calculated and
K(x,,t) determined t‘ro;n Expression (?5). In applying viscoelastic boundary ele-
ment method, the values of s-parameter were selected ranging from 1073 1072,
107, 10° 10%, to 10% and time t was chosen as 1/25 as given earlier [7-10].
Fig. 5 shows the opening displacement U; = w between the quasifracture envel-
ope surfaces versus the distance from the center of craze for various times
corresponding to 500, 50, 5 and O hours. It is seen that the quasifracture
opening displacement increases as time increases. The rate of increment is
relatively high from 0 to 50 hours. Beyond 50 hours, the opening displacement
changes slowly. However, it is interesting to find out that the stress distri-
bution has maintained its constant value as shown in Fig. 6. These results in-
dicate that the craze quasifracture behavior can be successfully analyzed

using this viscoelastic boundary element- method.
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Fig. 1 Schematic Diagram of a two-dimensional craze
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Fig. 3
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ANALYSIS OF CRACK-INCUCED-CRAZE IN POLYMERS
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MINNEAPOLIS, MINNESOTA 55455

ABSTRACT

In this paper, the viscoelastic boundary element method is used to
estimate the opening displacement and the envelope stress on the
surface of an isolated crack-induced-craze system. To predict the
propagation his(org of both thie crack and.the craze in a pdlgmer sheet,
the material bropertiesof the glassy polgmers are represented by a
generalized linear viscoelastic model. In the calculation, the energjg
absorption criterion is utilized to determine the initial breaking time
and the propagation rate. A sequence of numerical calculations of
crack-induced-craze propagation by means of the boundary element
method are carried out. Results are compared with the theoretical
micromechanics predictions. Good agreements are obtained. This
investigation illustrates that the three-step envelope stress profile is
resonably adequate for use in analyzing polymer quasifracture problems.
The stress concentration phenomenon, neglected on the Dugdale- model, is

taken into consideration in the present work.
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INTROBUCTION

The quasifracture and fracture behaviors of a crack-induced-craze
system in glassy polymers have been investigated extensively by many
researchers both theoretically and experimentally up to now!'’8.
Generally speaking, the crack-induced-craze model in micromechanics
accentuats the opening displacement, the envelope stress distribution
around the interfaces of a craze, and especially the propagation
processes of the craze and the crack. For some of the studies®’ the
opening displacement profile has been determined experimentally first,
from which the envelope stress destribution was evaluated by some
analytical methods such as Fourier transform. Whereas others obtain the
envelope stresses based upon experimental observations first, then the
opening dispiacement profile analytically. Some scientists®:? considered
that the yield property beyond the crack tip would determine the
cracking and crazing properties, thus Dugdale model was employed.
Although Dugdale model is thought to be able to predict the overall
effect, it is questionable whether it is good enough in representing the
true behavior of cracking and crazing properties in glassy polymers.
Based on a number of experimental observations and theoretical
analgsese-7. Hsiao et al proposed the stréss step~distribution model
some years ago?, which seems more resonable and accurate in
representing the properties of the region behind the craze tips.

Until now quite a lot ofl investigations on this subject matter have

been reported, among which most were done by experimental or




analytical method. Papers using numerical methods for predicting the
cracking and crazing behaviors have also appeared. L.Bevan!®-!! studied
the craze micromechanics by using linear boundary element method, in
which the craze at crack tip was modeled by linear springs with
constant stiffness. However, the linear elasticity and constant stiffness
are not accurate enough to represent the properties of
crack-induced-craze system in glassy polymers since it is well known
that glassy polymers behave viscoelastically rather than elastically, and
the drawing process is the dominant mechanism in polymer crazing.
Therefore, some scientistsrcons:idereq the time dependent crack-craze
-propagation, such as Chern and Hsiao?, McCartney'? and Schapery'? who
applied the linear viscoelastic model for studying the craze or crack
propagation, and Schapery'4, also studied the crack growth in
nonhomogeneous viscoelastic media for opening crack model. Some
others'™-16 investigated the nonlinear quasifracture properties using
finite element method, and the time-dependent behavior of 3 craze using
viscoelastic boundary element method. In these studies, the polymer
material around the crack or craze has been regarded as viscoelastic
represented by a generalized Kelvin model. The relationship between the
tractions and the displacement of fibril domains in a craze was
represented by a convolution integral. Using the correspondence
principle in linear viscoelasticity and the boundary element method, the
time-dependent opening displacement field and the stress distribution
along the craze surface envelope have been calculated numerically.

In this article, the viscoelastic boundary element method is utilized




to study the propagation of a crack-induced-craze system. Meanwhile,
the opening displacement profile and the envelope stresses on the craze
interface surface have been obtained for different propagation steps.
For comparison, the theoretical analysis using energy balance method
was formulated, with a three-step stress distribution for calculating the
propagation of the crack-induced-craze system. And the opening
displacement profile of the crack-craze contour was also evaluated.
Because of the change of the boundary conditions during the propagation
of both the craze and the crack, Salamon's!? supperposition principle of
a step-like propagation has been applied to this probiem, and a numerical
calculation sequence of the boundary element method has been derived.
Comparing the numerical and analytical results, good agreement has been
obtained. It appears that the step distribution of the envelope stress
used in the analysis is a good approximation suitable in dealing with
glassy polymers. The viscoelastic boundary element method has the
advantage of ease in preliminary preparation, economical in computing
time, and the required accuracy for studying the crack-induced-craze

system propagation problem may be achieved without much difficulty.
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THEORETICAL RAT

Craze is filled with load bearing highly oriented fibril domains and
cavitated networks formed by continuous flowing of the bulk polymer
during the crazing process. Based upon some experimental observations
18.13 and the craze model developed earlier?, referring to a central fixed
(X,, x3) coordinate system, an idealized symmetric crack-induced craze
system in a constant simple stress field Og is shown in Fig.1. Fig.2
shows c¢(t) as the half length of the crack-craze system and a(t), the

half length of the crack only at time t. The stresses acting on the

interfaces are called the envelope stresses with notation oc(x1 ,t) as a

function of position and time. The half ‘distance w(x;,t) between two
craze or crack interfaces is known as the half opening displacement.

The half opening displacement of the crack-induced-craze system in
a viscoelastic polymeric sheet can be obtained by using the
correspondence principle in linear viscoelasticity theory?0. The field

equations and the constitutive relations are:

Tij,j KX, =0, (1)
eij (X,,Xz,t) = %[U’d (X|,X3,t) + Uj,i (X"X}.t)] ’ (2)
rt )
e (0) = -“J,(t-'c)i%“t(—t?- iz, | 3)
€(b) = (! J (t—‘t)Md‘C (4)
kk = J 2 ot ’




whereé dii is the stress tensor, eij the strain tensor, Uij the

displacement gradients, and J; and J, are respectively the shear and

isotropic creep compliance functions of the original buitk medium.
Si5(0) = 04y (1) - 3 8; o) , )
eij(t) = G‘J(t) - '%“8“- ekk(t) ’ (6)

with i,j and k=1,3 denoting dummy variables. The boundary conditions
are,

O3(x,0,) =0, , [xi]<c(v), (7)

033~(X| .0, t) = GC(X' ,t) . IX' I <C(t) . - (8)

( O'33(X|.X3.t.) = Oo(t) ’ (9
{ C1i(xy.,%3,0)=0 } as (X2 + xz2)ro0 | (10)
L0'3(X1,X3.t):0 (1)

The opening displacement wq(x;.t) is defined as
wo(X7.1) = Us(x,.0,t) , | %] <c(t). (12)
To solve this viscoelastic problem, the Laplace transform of the
field equations and the boundary conditions is applied to reduce the time
dependency. Then the solution to the transformed equations can be found
by using Muskhelishvili's complex variable conformal mapping method?!

or Westergaard's complex variable stress function method2? for elastic
medium when c(t), a(t) and O(x.t) remain unchanged with respect to
time23.

The time dependent solution of the original problem is obtained by

Laplace inversion. This solution s valid only if the boundary conditions
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are independent of time as mentioned earlier. These shortcomings can
be surmounted by using a superposition method, i.e. a sequence of loading

and unloading steps!?:2% which yields,

t

wo(xp,t) = Cp (0) &(x,,t) + J Ch(t-t) &(x,,%) d, (13)
0

where

c
®(x,t) =0 c2-xF - % J Ie(,b) In(c+v/ c2712 ) dm
¢

K i ] ¢
K .121_] T (M) In(xy+v/ %3-77 ) dm + %Idc('fl-t) Inmdn,. (14)

0 ¥,
and with an assumed constant strain ratio v, L"! being the Laplace

inversion:

2(1-s2p2)
C t) = L-‘_"T—
p(t) = o7F

’ (15)
where E is the relaxation modulus of the bulk polymer and E(s)
represents the same in the Laplace domain s.

Taking into consideration of the thickness of the primordial layer
from which the fibril domain structure has been pulled out, the actuai

opening displacement of the system becomes?25:26:

] t t,
w(xy,t) = Cp(0) &(xy,1) *Iéb(t‘f)“’(""")dt +I l;—%:—%
. 0 tK| !

dr, (16)

where tx, is the time whenthe crack-craze-system tip first-reaches the

point x,', and A is the draw ratio. The values of A are found to be

virtually unchanged along the periphery of the craze8 2773' with only 2
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slightly increase in the central region and near the craze tip. Therefore,
A can be considered as a constant and the opening displacement reduces

to:

t
w(X,,t) =—):2:T[Cb(0)¢(x|,t) + J Co(t-t) #(x,,T) dT ],
0

for a(t)<x<c(t), (17?)

t

Ww(Xq,t) = Cp(0) $(xy,t) + j Co(t-T) @(xy,T) dT + —;‘-w( Xiste) s
0

for O<x<a(t), ‘ (18)

where t_ denotes the time when the crack tip arrives at the point X, =a.

The crack and craze lengths can be obtained by considering the
energy balance. The energy absorbed by the craze3? is spent to nucleate
fibril domains near the craze tips, to pull fibrils out of the craze
envelope surfaceand to break the fibril boundles?. With the supposition
j that the fibril nucleation rate at the craze tips is proportional to the

systrm growth velocity ¢(t)33, the energy rate necessary for craze tip

growth is Fcé(t). Similarly, the energy rate required for the crack tip

growth is r‘aé(t). where I'_ and ', are material constants. Based upon

the assumption that the energy. rate required for drawing fibrils out of

the craze envelope surface is proportional to the new fibril domain

surface creation rate S(t), and use thé—proportionalit}g constant I, we

have the Tollowing local energy rate balance equation:

H() =T &)+ Tat)+ T 5 (19)
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where Hc(t) is the energy absorption rate of the quadrantal system. Here

the strain energy, energy dissipation and kinetic energy have been
neglected since during steady state they are negligible compared with
the other rate quantities. With this simplification and the terms defined

earlier, it follows that2.3.32734

c

fie(t) = J EXRRALL (20)
0
c

- _ Vf (X|,t) aW(X‘,t)

S(t) = L4 o0t dxy, . (21)

Substituting into (19) resuits in ]
. _
J(oc—4 P’dv‘ ) awé’:"t) dx; = ToC + Tad , (22)

0

where V. is the volume fraction of the crazed polymer and d is the

diameter of the individual fiber domains.




BOUNDARY NT

The viscoelastic boundary element method is applied to a polymer
sheet with an isolated crack-induced-craze centrally located. The sheet
is subjected to a unit step tension stress ogH(t), where H(t) is the unit
step function of time t. The matefial properties of the bulk polymer
around the crack-induced-craze system is considered to be linearly
viscoelastic. The constitutive equation can be expressed by convolution
integral equations (3) and (4). For a linear viscoelastic polymer, a very
convenient expression for the creep compliance J(t) is obtainable by
using a generalized Kelvin model2: 35: 36 cbmposéd of a sériers of Voigt
elements as described belo;/w «

J(t) = Jg + i‘Ji(l-e“‘Et-i ), (23)
iz
where Jg and J; are constants and T, , retardation times. Since some

experimental results32 have shown that the strain ratio v(t) remains
virtually unchanged for long creep times, the viscoelastic relaxation
modulus E(t) can be shown to be of the following form:

1

] = l.-'[ ] ’ (24)
ZJ( ) s(Jg* ZJ —1

E(t) = L"l
i s+l
where the bar indicates Laplace transform and LT, Laplace- invers}on.
Taking into con%ideration of the fibril structure.of the craze beyond the
crack tip:™ the two opbosite interfaces of the craze region are connected
by the fibrillar- structure as shown in Fig.2, which is formed by a

fibrillation process due to the advances of the' crack. These connections

10
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are capable of transmitting load and can sustain large deformations. The
stress state of an individual fibril domain is considered as an uniaxial
tension. The relationship between the traction T3(xy,t) and the opening
displacement Usz(x,.t) of the crack-induced-craze system can be shown

as follows:

t
T3(X|,t) = "I K(x1,t-1:)

ot

t

= K(X|,0) Us(xq,t) + J' f((x‘,t-t) U3(X|,'C) dv, (25)
0"

on »xﬁc and x3=0,
where K (x;,t) is the stiffness per unit area on the craze surface and
K (x,.0), the initial value of K(x;,t) at x;. Using the molecular

orientation theory'®, the stiffness turns out to be:

K(X|,0) Jo

= 6
s2J(s) I (26)

K(xq,t) = L]

it should be noted that the drawing process is the main mechanism of
craze thickening. Thus K(x;.t) here is not the stiffness in the usual
sense. It must take the drawing process into consideration.
The traction T3(x,,t) acting along the craze envelope becomes
T3(x1.8)=-L"V [sK(x,,5) Us(x;,9)] . ' (27)
Because of the symmetry of the problem, only a quarter of the
uniform sheet of width B, length L is considered in the boundary element
calculation. The boundary conditions around the quadrantal sheet with

isolated crack-induced-craze system are:

11
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B4 T;(Xht) =0 ’
{ 0<x<a(t), x3=0, (28)

Ti(xlvt) =0,

t
Ta(xyt) = 'J K(X,,t-t)wﬂ. dv,

0 a(t)SX‘SC(t)’x3=0’ (29)
T‘(X'It) =0 ’

{ U;(x,,t) =0, c(t)<x|$B' X3=0, (30)
T|(x‘,t) =0 ’

T'(Xht) =0,

{ X;=B, Osx3slL, 31)
T;(Xg,t) =0,
Tx,8) =0,

{ o Ox<x,<B, x3=L, (32)
T3(X1vt) = doH(t) ’ -
Ugx3,t) = 0,

{ X1=0, O=<x3<L. (33)

Ti(x3,t) =0,
As the crack-craze system propagates, new crack and craze surfaces are
created. The associated energy release rate is

D(t) = [,a(t) + I .&(t), (34)
where I') and T'. represent respectively the coefficients of fracture work

for crack-and the crack-induced-craze, and a(t) and c(t) are respectively

the crack and the'system propagation rates. The energy absorption rate

for the crack-induced-craze system is expressed by Eq. (19). The energy

absorption criterion claims that '
D(t) = He(t) ,

€ BUs(kgt)

i.e. Tad(t) + I E(t) = J T (xy ) — 2
8

d)_(1 . (39)
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In addition, sometimes the constant crack opening displacement criterion
can be used as the propagation criterion of the crack-induced-craze
system. But these two criteria are the same if the deformation
associated with the crack tip is fixed with respect to time, a situation
which occurs when the applied stress is constant. Thus both the crack
and the craze propagate at the same velacity3’. In this case, the opening
displacement of the crack-induced-craze system is of the form:

U3(X],t) = f[X]—C(t)] . (36)

_ which means that the shape of the crack and that of the craze are

- conserved during the propagation, i.e.

L3 < &0 rixe) . 37)

If the envelope stress is considered as the following step functional
distribution:
x;0y a(t) =x,=<b(t),

O¢ = { (38)
(deo b(t) <X1SC(t) y

where c(t)-b(t) is a small quantity representing the stress growth at the

craze tip, then in the analgsis. the energy absorption criterion formula

(35) will be:
b c
. . 9 -0
Pga(t) + PCC(t) = J «|Go‘a—ti§d)(1 + J oy Oo'gut}'d)(‘ ’ (39)
a b
I+ T =0gle; Us(a,t) - (o - o< YUz (DD ], (40)

where Us(a.t)=Us(x; O], =5 and Us®)=Us(x D]y = . are the

opening displacements of the crack tip and the craze tip respectively.

13
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Noting that Us(b,t)<<Us(a,t), Eq.(40) becomes:

Ta + e

Us(a,t) = To™1 ' a1

which is the constant crack opening displacement criterion in linear
fracture mechanics. Therefore, in the theoretical and numerical analyses
of the propagation of crack-induced-craze system, either the energy
absorption criterion or the crack opening displacement criterion may be
applied to determine the propagation rates at different times.

The viscoelastic boundary element method for analyzing crack-
induced-craze system in polgmers has been described in detail in an
é‘arlier study!'s. Using the correspondence principler in linear

viscoelasticity theory, a2 series of transformed simultaneous algebraic .

equations can be solved. The displacement U, and traction T, on the

boundary involving the crack-craze surface can be obtained in the
Laplace domain. Based upon Schapery's collection numerical method38
for Laplace inversion, the components of the stress and displacement
fields at any point can be represented for the fixed time t by the series:
M
F() =Co+Cit+ S Ame Dmt (42)
, m=1

with Co, C,, A and b, being constants. Taking the Laplace

transformation of £q. (42) and mutiplying by the transform parameter s

yield:
o]
=0 C _Am 43
SF(S)—Co"’"S—““Z‘ ‘*:bm [ ( )
m= s

14




where- F (s) designates the Laplace transform of a time function F(t).
When time t goes to infinity the function F(t) should remain finite.

Therefore the constant Cy has to be chosen as zero. After a sequence of

s, (k=1,2, ... M+1) is selected, the constants Cy and A,'s can be

calculated by the viscoelastic boundary element method, and the opening

displacement U3j and the envelope stress T3j on the jth boundary

element of crack-craze system surface for time t become
H -
Ugj=Doj*+ 2. Dm; € *mt (44)
’ m=1i

(45)

Substituting the above two equations into the energy absorpiion criterion
(35) for fracture, the breaking or the initial propagation time t of the

crack-craze system for discreted boundary elements will be of the form:

0 + )
t = T(Tq + T¢) (46)

Vi | dUz;
gl(ng 4 df) dt Q‘

where 2. is the length of the boundary element on the crack tip and Jlj

the jth element length on the crack-craze system, U3j and T3j are

respectively the displacement and the envelope stress on jth boundary
element of the crack-craze system surface before propagation. __Arter
the commencement of the propagation of the crack-craze system, both

the boundary shape and the boundary conditions will change as a function

of time. Therefore, the numerical solutions USj and T31 are not wvalid for

15
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propagating crack- craze system because the linear viscoelastic
correspondence principle can only be applied to the problem with time
independent boundary conditions. These restrictions can be removed by a
generalized method of superposition principle, which uses stepwise
development boundary conditions formulized by Salamon'?. This method

Is utilized here to deal with the changing boundary conditions. A time

dependent function F(t) after n steps in the time interval ta<t<t,., may

be expressed as follows:

N-1

F(t) = 5 (Filry (b=t - Filri,(t-tiu 1} + Folrg (t-ta)], (47)

i .
where r; is some critical linear dimension and F the solution, i.e. the
opening displacement or the traciion. which can be solved by the linear
viscoelastic correspondence principle in the ith time step, t_and t .,
are the nth and the (n+1)th time steps. Similarly, the envelope traction

T.. and the displacement Ll3j on jth element of the crack-craze system

3]

after the nth element propagates can be writen as:
H
g™ o z D(l) (e—(,(it1 -1) e—o(i(t2+t3+ e +t,)
£ S0R (e%ite o) g xiltattar e tta) L
d (n-1) -t : -oc;t
4-20'.1, (e in-1 -De itn

]
e S0 e ita L (48)
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M - -
T(l’l) - 2 G:;) (e Bit‘ "I) e 3i(t2+t3+ *t“)

M e -f,
. ZG(i]?) (e itz _ye Biltaetatsty) | ..

e @Bty it

ij

-
u
-

+

G(i;" e Sitn , G‘o“j’ ) (49)

M=z

1

According to the principle, the calculation procedures are expounded as
roll;)ws. The first step is to calcqlate the coefficients Dij and Gi,ﬁ on
the - jth element using the viscoelastic boundary element method, in
which the length of crack is a; and that of the crack-craze system c;.
Then substituting Dij and Gij (i=0,1,...M) into Equation (35) the
transition or the initial breaking time can be obtained. After that, both
crack and craze propagate a distance of one element length for the
steady state propagation case. Correspondingly the boundary conditions
on the craze surface will shift forward by a length of one element. The
second step is the calculation of Dij and Gii (i=0,1,...M) on the jth
element using the same viscoelastic boundary elem'ent method. But at
this; time the length of crack is a;+Q and that of system.c;+Q, where {

is the length of an element. Substituting these coefficients, together

with Dij and G”. . into Equations (25) and (26). the opening displacement

Ug; of the system surface, the envelope traction [, c3an be obtained.

j

17




The breaking time t for the system to propagate to the next element can
again be calaulated from the energy absorption criterion Equation (35).

The same procedure continues to be iterated until the system grows to

the nth element. At that time, the coefficients Dii and Gij are
evaluated. And the opening displacement U3j and the envelope stress TSj

on the jth element can be obtained at time t .

18




RESULTS

A quarter of the sheet used in the calculation using the boundary

element method has unit thickness, width B=500pum and length L=600pum.
The initial lengths of the system and the craze are taken to be
c(0)=98um and a(0)=38um respectively. The total number of the
boundary elements is 155 with the smallest element of the length 4um
located on the craze surface. The mesh construction is shown in Fig.3,
where the elements around the craze tip are drawn in an enlarged scale.
The surface of the crack-induced-craze system is divided into 23
Déundarg’elements. Beyond the craze tip there are 10 elements in 40um
span. ’ '
The viscoelastic material properties are represented by a generalized

Kelvin model (23) with other material constants taken to be as follows:

n =4,

Jo =4.17x107% m2/MN ,

J; =0.71 x107% m2/MN

J, =0.62 x1074 m2/MN |

J3 =0.43 x107% m2/MN |

Jgq =0.31 x1074 m2/MN |

v =0.3 ,

Ty =1.0 hr_,
T, =10.0 hr.
T3 =80.0 hr. ,
T4 =110.0 hr.

I =0.3 J/m?

19




. T,=272 J/m?,

o<y =1.21,
xp =2.58 .
The following quantities occuring in the calculations of theoretical
method are also used39™4! :
A=2,
I's =0.231 J/m?
d =44 nm ,
which represent the properties of polycarbonate. The applied stress is
T0=37.4 MN/m. |
The first kind of calculation is based. upon the stiffness distribution
shown in Fig.4. Correspondindlg, the instantaneous opening displacement
of the crack-induced-craze system is plotted in Fig.5 against the
distance measured from-the center of crack. The data points indicating
the experimental observations®:8, triangles represent the theoretical -
solutions, and the solid curve is the result obtained by the boundary
element method. Initially the distribution of the stress normal to the
surface is shown in Fig.6. |
when the applied constaht stress Og is maintained, the opening
displacement of the .system increases as a result of creep and the

drawing of the fibril domains. According to the energy absorption

criterion, the craze-crack transition time t,=t; can be determined

numerically. Then the crack-craze system propagates steadily and the
case that the crack and the system have the same velocity? is considered

here. During the calculation of the propagation rate the stiffness on the

20
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craze.surface is shifted stepwise by one element. Fig.7 shows the time
dependent normalized lengths of the crack-induced-craze system, where
the points are obtained by the boundary element method and the solid
line is calculated by theoretical method. As can be seen from the figure,
the propagation rate at the steady state is almost constant. After a
certain period of time, both the crack and the system propagation rates
increase drastically. The opening displacement profile of the
crack-craze system as a function of time is shown in Fig.8. The opening
displacement profiles at different times exhibit somewhat similar
sha"pe. Fig.9 shows the comparison between the results obtained by the
boundary element method and the analytical results at time t=12.21
hours. A very good agreement is obtained. Fig.10 shows the envelope
stress distribution in the craze region.

The closeness between the theoretical results and those obtained
by the boundary element method in Figs. S, 7 and 9 connotes that the
boundary element resuits are generally in good agreement with the
analytical results. The accuracy depends on the mesh construction and
the type of element used. Constant elements used in the boundary
element calculation procedure yield satisfactory results in this case.
The use of higher order elements, such as first "and second order
elements, or much smaller elements would improve the accuracy. The
strésé distribution-on the craze surface has aimost the-s_ame shape and
magnitude' throughout the propagation. In factA. it has been suggested
that the Dugdale model is not fully adequate for analysis in describing

the craze envelope stress. Nevertheless, the analytical formulation

21
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using, the three-step distribution function has been shown to be a
resonable and good approximation for analyzing the isolated crack-craze
system. As can be seen in Figs. 6 and 10, there is a deep stress
minimum just behind the tip of the craze. This characteristic feature
persisted during the course of this investigation. This is somewhat
similar to the results obtained earlier using the finite element method.
Two extreme values in the envelope stress distribution have occurred.
Like in the present case a minimum envelope stress is located at some
point behind the craze tip where the stiffness gradient changes sharply
and a maximum one occurs at tﬁe tip. -Both of these extremes have been
obtained by either analytical or experimental methods. 2424344 1t g
hoped that this phenomenon will be studied further to acquire a better

understanding of its behavior with respect to the crack-craze system.
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EIGURES

Fig.1” Schematic fibrillar structure of a two-dimensional crack-
induced craze system.

Fi1g.2 A two-dimensional quadrantal crack-induced-craze system.

Fi9.3  Boundary element mesh with craze tip shown in an enlarged
scale. |

Fig.4 Stiffness distribution in craze region.

Fig.S' Opening displacement profile of crack-craze system.

Fig.6 Initial envelope stress on surface of craze region.

Fig.7 Time dependent normalized length of crack-induced-craze

T system. - '

Fig.8 Opening disptacement of crack-craze system at séveral time
steps. .

Fig:9 Comparison of opening displacements by boundary element
method and theoretical arialgsis. '

Fig.10 Envelope stress on craze surface at time-12.21 hours.
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